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Trapping of the lithium dienolate (I), derived from 3-methyl-2-butenoate, with Me3GeX (X = Br or CI) gives the 
a-germylated derivative (2), which reacts with various electrophiles at the y-position. 

Carbon-carbon bond formation at the y-position of dienolates 
has been a long standing problem in organic chemistry. It is 
generally accepted that dienolates, derived from enoates, 
undergo selective alkylation at the a-position under kinetic 
control in preference to the y-position.1 We report that use of 

the germanium masked dienolates solves some of the inherent 
problems associated with dienolate chemistry. 

The lithium dienolate (1), generated from the correspond- 
ing enoate and lithium diethylamide (LDA), was trapped with 
Me3GeX (X = Br or Cl). Interestingly, the a-germylated ester 

Table 1. C-C bond formation at the y-position via the germanium masked dienolate (2).a 

Entry Electrophile Reaction conditions 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

PhCH(OMe), 
n-C7H15CH(OMe)2 
PhCH=CHCH( OMe), 
PhCH=CHCH( OMe), 
Me2C( OMe), 
PhCHO 
PhC(Me)HBr 
MeOCH,Cl 
PhCH=CHCH,Br 
Me2C=CHCH2Br 

TiC14, -78 to -40 "C 
TiC14, -78 to -35 "C 
TIC&, -78 to -40 "C 
CF3S03SiMe3, -78 to - 
TiC14, -78 to -35 "C 
TiC14, -78 "C 
ZnBr,, -78 to 0 "C 
TiC14, -78 to - 10 "C 
TMSCl, 25 "C, 10 Kbar 
TMSCl, 25 "C, 10 Kbar 

Product ( E  : 2) 
Isolated 
% yield 

PhC(OMe)HCH,C(Me)=CHC02Et (9.5 : 1) 87 
n-C7HISCH(OMe)CH2C(Me)=CHCO2Et (5 : 1) 78 
PhCH=CHC(OMe)HCH,C(Me)=CHCO,Et (12 : 1) 89 

.40 "C PhCH=CHC(OMe)HCH,C(Me)=CHCO,Et (4.5 : 1) 91 
Me,C(OMe)CH,C(Me)=CHCO,Et (3 : 1) 77 
PhCH(OH)CH,C(Me)=CHCO,Et (4.5 : 1) 37 
PhCH(Me)CH,T(Me)=CHCO,Et (1.3 : 1) 45 
MeOCH,CH,C(Me)=CHCO,Et (3.5 : 1) 38 
PhCH=CHCH2CH2C(Me)=CHC02Et (1.2 : 1) 91b 
Me2C=CHCH2CH2C(Me)=CHC02Et (1.2 : 1) 3Sb 

a To a CH2C12 solution of an electrophile (0.5 mmol) and (2) (1.2 equiv.) was added a Lewis acid (1 equiv.) at -78"C, and the reaction 
was quenched at the temperature written in the Table. The E :  Z ratio was determined by *H n.m.r. analysis. b Small amounts (5-10%) of the 
a-isomers were formed along with the y-isomers. 
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Scheme 1. Reagents: i, LDA, THF; ii, Me3GeX; iii, Me3SiC1; 
Bu,SnCl. 
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Scheme 2. Reagents and conditions: i, TiC14, -78 to -40°C, 82%. 

(2) was obtained in 87% isolated yield [b.p. 100 "CI5 mmHg 
(Kugelrohr)]. t This a-regioselectivity is in a striking contrast 
to the y-regioselectivity shown with Bu3SnX2 and to the 
0-silylation shown with Me3SiX3 (Scheme 1). The y-stannyla- 
tion is presumably due to the thermodynamic stability of the 
product and the a-germylation is a reflection of kinetic control 
{the C-Ge bond is stronger than the C-Sn bond [D(Ge-Et) = 
237 kJ mol-1, D(Sn-Et) = 193 kJ mol-1]}.4 The strong 
affinity of Si for oxygen produces the 0-silylated derivative. 
The a-germylation (3) was also observed for the dienolate 
derived from methyl crotonate, so it may be concluded that 
the kinetic C-metallation is realized with Me3GeX. 

Next we examined the C-C bond formation via the 
germanium masked dienolate (2) (Table 1). Acetals reacted 
regioselectively at the y-position in high yields (entries 1-5). 
The stereochemistries of enoates were predominantly E. It is 
noteworthy that the @$-unsaturated acetal undergoes 
regioselective head-to-tail coupling with (2) (entries 3 and 4).5 

Aldehydes and reactive halides also gave the y-alkylation 
products in moderate to allowable yields (entries 6-8). The 
reaction of allylic halides in the presence of ordinary Lewis 
acids (TiC14, BF3, A1C13, ZnX2, etc.) resulted in the produc- 

t Selected spectroscopic data for (2): 1H n.m.r. (90 MHz, CC14) 6 0.24 
(9H, s, GeMe3), 1.24 (3H, t, J 7.5 Hz, OCHzCH3), 1.79 (3H, s, 
=CCH3), 2.87 (lH, s, GeCH), 4.03 (2H, q, J 7.5 Hz, OCHz-), 4.67 
and 4.75 (2H, H,C=). 

For (3): 1H n.m.r. (90 MHz, CC4) 6 0.21 (9H, s, GeMe3), 2.89 (lH, 
d, J 10.0 Hz, GeCH-), 3.60 (3H, s, OMe), 4.74 (lH, m), 4.90 (s, lH), 
6.0 (lH, m) (these last three protons are assigned as olefinic protons). 

tion of complex mixtures. However, use of Me3SiC1(TMSCl) 
at 10 kbar solved this problem;6 the head-to-tail coupling takes 
place either in high yield (entry 9) or in allowable yield (entry 

The y-regioselectivity was also observed for (3) (Scheme 2); 
although (3) contained small amounts of the y-germylated 
isomer, this regioisomer did not react with electrophiles and 
was recovered without change. 

The present development shows two important aspects of 
organogermanium compounds in organic synthesis; (i) the 
kinetically controlled C-metallation is achieved, which is 
difficult with other metals; (ii) the a-alkoxycarbonyl substi- 
tuted allylic germanium compounds react smoothly with 
electrophiles in contrast to the corresponding silyl deriva- 
tives -7 

10). $ 
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$ The a-germylated ester (2) was recovered in the y-germylated form 
after the reaction ceased. The coupling took place at the &-position of 
allylic halides exclusively. A minor isomer (-5%) presumably arose 
from the isomerized y-germylated ester. In entry 6, benzaldehyde was 
recovered. 
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